Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 28: 101155, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712849

RESUMO

3'-phosphoadenosine 5'-phosphosulfate (PAPS) is synthesized in two steps by PAPS synthase (PAPSS). PAPSS is comprised of ATP sulfurylase (ATPS) and APS kinase (APSK) domain activities. ATPS combines inorganic sulfate with α-phosphoryl of ATP to form adenosine 5'-phosphosulfate (APS) and PPi. In the second step APS is phosphorylated at 3'-OH using another mole of ATP to form PAPS and ADP catalyzed by APSK. The transfer of gamma-phosphoryl from ATP onto 3'-OH requires Mg2 + and purported to involve residues D87GD89N. We report that mutation of either aspartic residue to alanine completely abolishes APSK activity in PAPS formation. PAPSS is an, unique enzyme that binds to four different nucleotides: ATP and APS on both ATPS and APSK domains and ADP and PAPS exclusively on the APSK domain. The thermodynamic binding and the catalytic interplay must be very tightly controlled to form the end-product PAPS in the forward direction. Though APS binds to ATPS and APSK, in ATPS domain, the APS is a product and for APSK it is a substrate. DGDN motif is absent in ATPS and present in APSK. Mutation of D87 and D89 did not hamper ATPS activity however abolished APSK activity severely. Thus, D87GD89N region is required for stabilization of Mg2+-ATP, in the process of splitting the γ-phosphoryl from ATP and transfer of γ-phosphoryl onto 3'-OH of APS to form PAPS a process that cannot be achieved by ATPS domain. In addition, gamma32P-ATP, trapped phosphoryl enzyme intermediate more with PAPSS2 than with PAPSS1. This suggests inherent active site residues could control novel catalytic differences. Molecular docking studies of hPAPSS1with ATP + Mg2+ and APS of wild type and mutants supports the experimental results.

2.
Molecules ; 25(9)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397647

RESUMO

Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.


Assuntos
Arginina/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Regulon/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Arginina/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Entropia , Escherichia coli/química , Escherichia coli/genética , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Proteínas Repressoras/genética , Alinhamento de Sequência
3.
Sci Signal ; 12(608)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744929

RESUMO

The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.


Assuntos
Cálcio/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Domínios Proteicos , Desdobramento de Proteína , Molécula 1 de Interação Estromal/química , Algoritmos , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Motivos EF Hand , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Ratos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
4.
Semin Cell Dev Biol ; 94: 50-58, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30639326

RESUMO

Highly Ca2+ selective channels trigger a large variety of cellular signaling processes in both excitable and non-excitable cells. Among these channels, the Orai channel is unique in its activation mechanism and its structure. It mediates Ca2+ influx into the cytosol with an extremely small unitary conductance over longer time-scales, ranging from minutes up to several hours. Its activation is regulated by the Ca2+ content of the endoplasmic reticulum (ER). Depletion of luminal [Ca2+]ER is sensed by the STIM1 single transmembrane protein that directly binds and gates the Orai1 channel. Orai mediated Ca2+ influx increases cytosolic Ca2+ from 100 nM up to low micromolar range close to the pore and thereby forms Ca2+ microdomains. Hence, these features of the Orai channel can trigger long-term signaling processes without affecting the overall Ca2+ content of a single living cell. Here we focus on the architecture and dynamic conformational changes within the Orai channel. This review summarizes current achievements of molecular dynamics simulations in combination with live cell recordings to address gating and permeation of the Orai channel with molecular precision.


Assuntos
Cálcio/metabolismo , Simulação de Dinâmica Molecular , Proteína ORAI1/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo
5.
J Biol Chem ; 293(39): 15043-15054, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30054276

RESUMO

Although EcoR124 is one of the better-studied Type I restriction-modification enzymes, it still presents many challenges to detailed analyses because of its structural and functional complexity and missing structural information. In all available structures of its motor subunit HsdR, responsible for DNA translocation and cleavage, a large part of the HsdR C terminus remains unresolved. The crystal structure of the C terminus of HsdR, obtained with a crystallization chaperone in the form of pHluorin fusion and refined to 2.45 Å, revealed that this part of the protein forms an independent domain with its own hydrophobic core and displays a unique α-helical fold. The full-length HsdR model, based on the WT structure and the C-terminal domain determined here, disclosed a proposed DNA-binding groove lined by positively charged residues. In vivo and in vitro assays with a C-terminal deletion mutant of HsdR supported the idea that this domain is involved in complex assembly and DNA binding. Conserved residues identified through sequence analysis of the C-terminal domain may play a key role in protein-protein and protein-DNA interactions. We conclude that the motor subunit of EcoR124 comprises five structural and functional domains, with the fifth, the C-terminal domain, revealing a unique fold characterized by four conserved motifs in the IC subfamily of Type I restriction-modification systems. In summary, the structural and biochemical results reported here support a model in which the C-terminal domain of the motor subunit HsdR of the endonuclease EcoR124 is involved in complex assembly and DNA binding.


Assuntos
Proteínas de Ligação a DNA/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sequência de Aminoácidos , Fenômenos Biofísicos , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Conformação Proteica , Domínios Proteicos/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética
6.
Sci Signal ; 10(507)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184031

RESUMO

The channel Orai1 requires Ca2+ store depletion in the endoplasmic reticulum and an interaction with the Ca2+ sensor STIM1 to mediate Ca2+ signaling. Alterations in Orai1-mediated Ca2+ influx have been linked to several pathological conditions including immunodeficiency, tubular myopathy, and cancer. We screened large-scale cancer genomics data sets for dysfunctional Orai1 mutants. Five of the identified Orai1 mutations resulted in constitutively active gating and transcriptional activation. Our analysis showed that certain Orai1 mutations were clustered in the transmembrane 2 helix surrounding the pore, which is a trigger site for Orai1 channel gating. Analysis of the constitutively open Orai1 mutant channels revealed two fundamental gates that enabled Ca2+ influx: Arginine side chains were displaced so they no longer blocked the pore, and a chain of water molecules formed in the hydrophobic pore region. Together, these results enabled us to identify a cluster of Orai1 mutations that trigger Ca2+ permeation associated with gene transcription and provide a gating mechanism for Orai1.


Assuntos
Membrana Celular/metabolismo , Ativação do Canal Iônico/genética , Proteína ORAI1/genética , Ativação Transcricional/genética , Animais , Arginina/metabolismo , Cálcio/metabolismo , Drosophila melanogaster , Genômica , Células HCT116 , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Doenças Musculares/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
7.
PeerJ ; 5: e2887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133570

RESUMO

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.

8.
Sci Signal ; 8(408): ra131, 2015 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-26696631

RESUMO

The Ca(2+) release-activated Ca(2+) channel mediates Ca(2+) influx in a plethora of cell types, thereby controlling diverse cellular functions. The channel complex is composed of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum Ca(2+)-sensing protein, and Orai1, a plasma membrane Ca(2+) channel. Channels composed of STIM1 and Orai1 mediate Ca(2+) influx even at low extracellular Ca(2+) concentrations. We investigated whether the activity of Orai1 adapted to different environmental Ca(2+) concentrations. We used homology modeling and molecular dynamics simulations to predict the presence of an extracellular Ca(2+)-accumulating region (CAR) at the pore entrance of Orai1. Furthermore, simulations of Orai1 proteins with mutations in CAR, along with live-cell experiments, or simulations and electrophysiological recordings of the channel with transient, electrostatic loop3 interacting with loop1 (the site of CAR) determined that CAR enhanced Ca(2+) permeation most efficiently at low external Ca(2+) concentrations. Consistent with these results, cells expressing Orai1 CAR mutants exhibited impaired gene expression stimulated by the Ca(2+)-activated transcription factor nuclear factor of activated T cells (NFAT). We propose that the Orai1 channel architecture with a close proximity of CAR to the selectivity filter, which enables Ca(2+)-selective ion permeation, enhances the local extracellular Ca(2+) concentration to maintain Ca(2+)-dependent gene regulation even in environments with relatively low Ca(2+)concentrations.


Assuntos
Cálcio/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Proteínas de Drosophila , Proteínas de Membrana , Transcrição Gênica/fisiologia , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína ORAI1 , Estrutura Secundária de Proteína , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...